Перевод: с английского на все языки

со всех языков на английский

Materials Research Laboratory

  • 1 laboratory waste

    1. отходы лабораторий

     

    отходы лабораторий

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    EN

    laboratory waste
    Discarded materials produced by analytical and research activities in a laboratory. (Source: ERG)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > laboratory waste

  • 2 MRL

    1) Компьютерная техника: Memory Read Line
    2) Медицина: Medical Record Locator
    5) Страхование: maximum ratable loss
    7) Университет: Materials Research Laboratory
    8) Нефть: maximum rate limitation, основная ремонтная ведомость (master repair list), средний остаточный ресурс (mean residual life), средняя остаточная долговечность (mean residual life), средний уровень надёжности (mean reliability number)
    10) Экология: пдк, Maximum Residue Limit (максимально допустимый [остаточный] уровень)
    11) Деловая лексика: Minimal Risk Level
    12) Образование: Media Resource Library
    13) Автоматика: meaning-representation language
    15) Военно-политический термин: minimum risk level
    16) NYSE. Marine Drilling Company, Inc.
    17) Аэропорты: Miners Lake, Queensland, Australia
    18) Программное обеспечение: media resource locator (URL for multimedia)

    Универсальный англо-русский словарь > MRL

  • 3 Mrl

    1) Компьютерная техника: Memory Read Line
    2) Медицина: Medical Record Locator
    5) Страхование: maximum ratable loss
    7) Университет: Materials Research Laboratory
    8) Нефть: maximum rate limitation, основная ремонтная ведомость (master repair list), средний остаточный ресурс (mean residual life), средняя остаточная долговечность (mean residual life), средний уровень надёжности (mean reliability number)
    10) Экология: пдк, Maximum Residue Limit (максимально допустимый [остаточный] уровень)
    11) Деловая лексика: Minimal Risk Level
    12) Образование: Media Resource Library
    13) Автоматика: meaning-representation language
    15) Военно-политический термин: minimum risk level
    16) NYSE. Marine Drilling Company, Inc.
    17) Аэропорты: Miners Lake, Queensland, Australia
    18) Программное обеспечение: media resource locator (URL for multimedia)

    Универсальный англо-русский словарь > Mrl

  • 4 ACE-MRL

    Универсальный англо-русский словарь > ACE-MRL

  • 5 Mees, Charles Edward Kenneth

    [br]
    b. 1882 Wellingborough, England
    d. 1960 USA
    [br]
    Anglo-American photographic scientist and Director of Research at the Kodak Research Laboratory.
    [br]
    The son of a Wesleyan minister, Mees was interested in chemistry from an early age and studied at St Dunstan's College in Catford, where he met Samuel E.Sheppard, with whom he went on to University College London in 1900. They worked together on a thesis for BSc degrees in 1903, developing the work begun by Hurter and Driffield on photographic sensitometry. This and other research papers were published in 1907 in the book Investigations on the Theory of the Photographic Process, which became a standard reference work. After obtaining a doctorate in 1906, Mees joined the firm of Wratten \& Wainwright (see F.C.L.Wratten), manufacturers of dry plates in Croydon; he started work on 1 April 1906, first tackling the problem of manufacturing colour-sensitive emulsions and enabling the company to market the first fully panchromatic plates from the end of that year.
    During the next few years Mees ran the commercial operation of the company as Managing Director and carried out research into new products, including filters for use with the new emulsions. In January 1912 he was visited by George Eastman, the American photographic manufacturer, who asked him to go to Rochester, New York, and set up a photographic research laboratory in the Kodak factory there. Wratten was prepared to release Mees on condition that Eastman bought the company; thus, Wratten and Wainwright became part of Kodak Ltd, and Mees left for America. He supervised the construction of a building in the heart of Kodak Park, and the building was fully equipped not only as a research laboratory, but also with facilities for coating and packing sensitized materials. It also had the most comprehensive library of photographic books in the world. Work at the laboratory started at the beginning of 1913, with a staff of twenty recruited from America and England, including Mees's collaborator of earlier years, Sheppard. Under Mees's direction there flowed from the Kodak research Laboratory a constant stream of discoveries, many of them leading to new products. Among these were the 16 mm amateur film-making system launched in 1923; the first amateur colour-movie system, Kodacolor, in 1928; and 8 mm home movies, in 1932. His support for the young experimenters Mannes and Godowsky, who were working on colour photography, led to their joining the Research Laboratory and to the introduction of the first multi-layer colour film, Kodachrome, in 1935. Eastman had agreed from the beginning that as much of the laboratory's work as possible should be published, and Mees himself wrote prolifically, publishing over 200 articles and ten books. While he made significant contributions to the understanding of the photographic process, particularly through his early research, it is his creation and organization of the Kodak Research Laboratory that is his lasting memorial. His interests were many and varied, including Egyptology, astronomy, marine biology and history. He was a Fellow of the Royal Society.
    [br]
    Principal Honours and Distinctions
    FRS.
    Bibliography
    1961, From Dry Plates to Ektachrome Film, New York (partly autobiographical).
    BC

    Biographical history of technology > Mees, Charles Edward Kenneth

  • 6 Godowsky, Leopold Jr

    [br]
    b. 27 May 1900 Chicago, Illinois, USA d. 1983
    [br]
    American musician and photographic experimenter whose researches, with those of his colleague Mannes, led to the introduction of the first commercial tripack colour film, Kodachrome.
    [br]
    Both from distinguished musical families, Godowsky and Leopold Damrosch Mannes met at Riverdale School in New York in 1916, and shared an interest in photography. They began experiments in methods of additive colour photography, gaining a patent for a three-colour projector. Godowsky went to the University of California to study chemistry, physics and mathematics, while working as a professional violinist; Mannes, a pianist, went to Harvard to study music and physics. They kept in touch, and after graduating they joined up in New York, working as musicians and experimenting in colour photography in their spare time.
    Initially working in kitchens and bathrooms, they succeeded in creating a two-layer colour photographic plate, with emulsions separately sensitized to parts of the spectrum, and patented the process. This achievement was all the greater since they were unable to make the emulsions themselves and had to resort to buying commercial photographic plates so that they could scrape off the emulsions, remelt them and coat their experimental materials. In 1922 their work came to the attention of C.E.K. Mees, the leading photographic scientist and Director of the Eastman Kodak Research Laboratory in Rochester, New York. Mees arranged for plates to be coated to their specifications. With a grant from Kuhn, Loeb \& Co. they were able to rent laboratory space. Learning of Rudolf Fischer's early work on dye couplers, they worked to develop a new process incorporating them. Mees saw that their work, however promising, would not develop in an amateur laboratory, and in 1930 he invited them to join the Kodak Research Laboratory, where they arrived on 15 June 1931. Their new colleagues worked on ways of coating multi-layer film, while Mannes and Godowsky worked out a method of separately processing the individual layers in the exposed film. The result was Kodachrome film, the first of the modern integral tripack films, launched on 15 April 1935.
    They remained with Eastman Kodak until December 1939; their work contributed to the later appearance of Ektachrome colour-reversal film and the Kodacolor and Eastman Color negative-positive colour processes. Mannes became the Director of his father's Music Academy in New York, remaining as such until his death in 1964. Godowsky returned to Westport, Connecticut, and continued to study mathematics at Columbia University. He carried out photographic research un his private laboratory up until the time of his death in 1983.
    [br]
    Further Reading
    C.E.K.Mees, 1961, From Dry Plates to Ektachrome Film, New York.
    BC

    Biographical history of technology > Godowsky, Leopold Jr

  • 7 Brearley, Harry

    SUBJECT AREA: Metallurgy
    [br]
    b. 18 February 1871 Sheffield, England
    d. 14 July 1948 Torquay, Devon, England
    [br]
    English inventor of stainless steel.
    [br]
    Brearley was born in poor circumstances. He received little formal education and was nurtured rather in and around the works of Thomas Firth \& Sons, where his father worked in the crucible steel-melting shop. One of his first jobs was to help in their chemical laboratory where the chief chemist, James Taylor, encouraged him and helped him fit himself for a career as a steelworks chemist.
    In 1901 Brearley left Firth's to set up a laboratory at Kayser Ellison \& Co., but he returned to Firth's in 1904, when he was appointed Chief Chemist at their Riga works, and Works Manager the following year. In 1907 he returned to Sheffield to design and equip a research laboratory to serve both Firth's and John Brown \& Co. It was during his time as head of this laboratory that he made his celebrated discovery. In 1913, while seeking improved steels for rifle barrels, he used one containing 12.68 per cent chromium and 0.24 per cent carbon, in the hope that it would resist fouling and erosion. He tried to etch a specimen for microscopic examination but failed, from which he concluded that it would resist corrosion by, for example, the acids encountered in foods and cooking. The first knives made of this new steel were unsatisfactory and the 1914–18 war interrupted further research. But eventually the problems were overcome and Brearley's discovery led to a range of stainless steels with various compositions for domestic, medical and industrial uses, including the well-known "18–8" steel, with 18 per cent chromium and 8 per cent nickel.
    In 1915 Brearley left the laboratory to become Works Manager, then Technical Director, at Brown Bayley's steelworks until his retirement in 1925.
    [br]
    Principal Honours and Distinctions
    Iron and Steel Institute Bessemer Gold Medal 1920.
    Bibliography
    Brearley wrote several books, including: 1915 (?), with F.Ibbotson, The Analysis of Steelworks Materials, London.
    The Heat Treatment of Tool Steels. Ingots and Ingot Moulds.
    Later books include autobiographical details: 1946, Talks on Steelmaking, American Society for Metals.
    1941, Knotted String: Autobiography of a Steelmaker, London: Longmans, Green.
    Further Reading
    Obituary, 1948, Journal of the Iron and Steel Institute: 428–9.
    LRD

    Biographical history of technology > Brearley, Harry

  • 8 Dickson, J.T.

    [br]
    b. c.1920 Scotland
    [br]
    Scottish co-inventor of the polyester fibre, Terylene.
    [br]
    The introduction of one type of artificial fibre encouraged chemists to look for more. J.T.Dickson and J.R. Whinfield discovered one such fibre in 1941 when they derived polyester from terephthalic acid and ethylene glycol. Dickson, a 21-year-old Edinburgh graduate, was working under Whinfield at the Calico Printers' Association research laboratory at Broad Oak Print Works in Accrington. He was put onto fibre research: probably in April, but certainly by 5 July 1941, a murky-looking resin had been synthesized, out of which Dickson successfully drew a filament, which was named "Terylene" by its discoverers. Owing to restrictions imposed in Britain during the Second World War, this fibre was developed initially by the DuPont Company in the USA, where it was marketed under the name "Dacron". When Imperial Chemical Industries (ICI) were able to manufacture it in Britain, it acquired the brand name "Terylene" and became very popular. Under the microscope, Terylene appears identical to nylon: longitudinally, it is completely devoid of any structure and the filaments appear as glass rods with a perfectly circular cross-section. The uses of Terylene are similar to those of nylon, but it has two advantages. First, it can be heat-set by exposing the fabric to a temperature about 30°C higher than is likely to be encountered in everyday use, and therefore can be the basis for "easy-care" clothing such as drip-dry shirts. It can be blended with other fibres such as wool, and when pressed at a high temperature the creases are remarkably durable. It is also remarkably resistant to chemicals, which makes it particularly suitable for industrial purposes under conditions where other textile materials would be degraded rapidly. Dickson later worked for ICI.
    [br]
    Further Reading
    For accounts of the discovery of Terylene, see: J.R.Whinfield, 1953, Textile Research Journal (May). R.Collins, 1991, "Terylene", Historian 30 (Spring).
    Accounts of the introduction of svnthetic fibres are covered in: D.S.Lyle, 1982, Modern Textiles, New York.
    S.R.Cockett, An Introduction to Man-Made Fibres.
    RLH

    Biographical history of technology > Dickson, J.T.

  • 9 Chevenard, Pierre Antoine Jean Sylvestre

    SUBJECT AREA: Metallurgy
    [br]
    b. 31 December 1888 Thizy, Rhône, France
    d. 15 August 1960 Fontenoy-aux-Roses, France
    [br]
    French metallurgist, inventor of the alloys Elinvar and Platinite and of the method of strengthening nickel-chromium alloys by a precipitate ofNi3Al which provided the basis of all later super-alloy development.
    [br]
    Soon after graduating from the Ecole des Mines at St-Etienne in 1910, Chevenard joined the Société de Commentry Fourchambault et Decazeville at their steelworks at Imphy, where he remained for the whole of his career. Imphy had for some years specialized in the production of nickel steels. From this venture emerged the first austenitic nickel-chromium steel, containing 6 per cent chromium and 22–4 per cent nickel and produced commercially in 1895. Most of the alloys required by Guillaume in his search for the low-expansion alloy Invar were made at Imphy. At the Imphy Research Laboratory, established in 1911, Chevenard conducted research into the development of specialized nickel-based alloys. His first success followed from an observation that some of the ferro-nickels were free from the low-temperature brittleness exhibited by conventional steels. To satisfy the technical requirements of Georges Claude, the French cryogenic pioneer, Chevenard was then able in 1912 to develop an alloy containing 55–60 per cent nickel, 1–3 per cent manganese and 0.2–0.4 per cent carbon. This was ductile down to −190°C, at which temperature carbon steel was very brittle.
    By 1916 Elinvar, a nickel-iron-chromium alloy with an elastic modulus that did not vary appreciably with changes in ambient temperature, had been identified. This found extensive use in horology and instrument manufacture, and even for the production of high-quality tuning forks. Another very popular alloy was Platinite, which had the same coefficient of thermal expansion as platinum and soda glass. It was used in considerable quantities by incandescent-lamp manufacturers for lead-in wires. Other materials developed by Chevenard at this stage to satisfy the requirements of the electrical industry included resistance alloys, base-metal thermocouple combinations, magnetically soft high-permeability alloys, and nickel-aluminium permanent magnet steels of very high coercivity which greatly improved the power and reliability of car magnetos. Thermostatic bimetals of all varieties soon became an important branch of manufacture at Imphy.
    During the remainder of his career at Imphy, Chevenard brilliantly elaborated the work on nickel-chromium-tungsten alloys to make stronger pressure vessels for the Haber and other chemical processes. Another famous alloy that he developed, ATV, contained 35 per cent nickel and 11 per cent chromium and was free from the problem of stress-induced cracking in steam that had hitherto inhibited the development of high-power steam turbines. Between 1912 and 1917, Chevenard recognized the harmful effects of traces of carbon on this type of alloy, and in the immediate postwar years he found efficient methods of scavenging the residual carbon by controlled additions of reactive metals. This led to the development of a range of stabilized austenitic stainless steels which were free from the problems of intercrystalline corrosion and weld decay that then caused so much difficulty to the manufacturers of chemical plant.
    Chevenard soon concluded that only the nickel-chromium system could provide a satisfactory basis for the subsequent development of high-temperature alloys. The first published reference to the strengthening of such materials by additions of aluminium and/or titanium occurs in his UK patent of 1929. This strengthening approach was adopted in the later wartime development in Britain of the Nimonic series of alloys, all of which depended for their high-temperature strength upon the precipitated compound Ni3Al.
    In 1936 he was studying the effect of what is now known as "thermal fatigue", which contributes to the eventual failure of both gas and steam turbines. He then published details of equipment for assessing the susceptibility of nickel-chromium alloys to this type of breakdown by a process of repeated quenching. Around this time he began to make systematic use of the thermo-gravimetrie balance for high-temperature oxidation studies.
    [br]
    Principal Honours and Distinctions
    President, Société de Physique. Commandeur de la Légion d'honneur.
    Bibliography
    1929, Analyse dilatométrique des matériaux, with a preface be C.E.Guillaume, Paris: Dunod (still regarded as the definitive work on this subject).
    The Dictionary of Scientific Biography lists around thirty of his more important publications between 1914 and 1943.
    Further Reading
    "Chevenard, a great French metallurgist", 1960, Acier Fins (Spec.) 36:92–100.
    L.Valluz, 1961, "Notice sur les travaux de Pierre Chevenard, 1888–1960", Paris: Institut de France, Académie des Sciences.
    ASD

    Biographical history of technology > Chevenard, Pierre Antoine Jean Sylvestre

  • 10 Rosenhain, Walter

    SUBJECT AREA: Metallurgy
    [br]
    b. 24 August 1875 Berlin, Germany
    d. 17 March 1934 Kingston Hill, Surrey, England
    [br]
    German metallurgist, first Superintendent of the Department of Metallurgy and Metallurgical Chemistry at the National Physical Laboratory, Teddington, Middlesex.
    [br]
    His family emigrated to Australia when he was 5 years old. He was educated at Wesley College, Melbourne, and attended Queen's College, University of Melbourne, graduating in physics and engineering in 1897. As an 1851 Exhibitioner he then spent three years at St John's College, Cambridge, under Sir Alfred Ewing, where he studied the microstructure of deformed metal crystals and abandoned his original intention of becoming a civil engineer. Rosenhain was the first to observe the slip-bands in metal crystals, and in the Bakerian Lecture delivered jointly by Ewing and Rosenhain to the Royal Society in 1899 it was shown that metals deformed plastically by a mechanism involving shear slip along individual crystal planes. From this conception modern ideas on the plasticity and recrystallization of metals rapidly developed. On leaving Cambridge, Rosenhain joined the Birmingham firm of Chance Brothers, where he worked for six years on optical glass and lighthouse-lens systems. A book, Glass Manufacture, written in 1908, derives from this period, during which he continued his metallurgical researches in the evenings in his home laboratory and published several papers on his work.
    In 1906 Rosenhain was appointed Head of the Metallurgical Department of the National Physical Laboratory (NPL), and in 1908 he became the first Superintendent of the new Department of Metallurgy and Metallurgical Chemistry. Many of the techniques he introduced at Teddington were described in his Introduction to Physical Metallurgy, published in 1914. At the outbreak of the First World War, Rosenhain was asked to undertake work in his department on the manufacture of optical glass. This soon made it possible to manufacture optical glass of high quality on an industrial scale in Britain. Much valuable work on refractory materials stemmed from this venture. Rosenhain's early years at the NPL were, however, inseparably linked with his work on light alloys, which between 1912 and the end of the war involved virtually all of the metallurgical staff of the laboratory. The most important end product was the well-known "Y" Alloy (4% copper, 2% nickel and 1.5% magnesium) extensively used for the pistons and cylinder heads of aircraft engines. It was the prototype of the RR series of alloys jointly developed by Rolls Royce and High Duty Alloys. An improved zinc-based die-casting alloy devised by Rosenhain was also used during the war on a large scale for the production of shell fuses.
    After the First World War, much attention was devoted to beryllium, which because of its strength, lightness, and stiffness would, it was hoped, become the airframe material of the future. It remained, however, too brittle for practical use. Other investigations dealt with impurities in copper, gases in aluminium alloys, dental alloys, and the constitution of alloys. During this period, Rosenhain's laboratory became internationally known as a centre of excellence for the determination of accurate equilibrium diagrams.
    [br]
    Principal Honours and Distinctions
    FRS 1913. President, Institute of Metals 1828–30. Iron and Steel Institute Bessemer Medal, Carnegie Medal.
    Bibliography
    1908, Glass Manufacture.
    1914, An Introduction to the Study of Physical Metallurgy, London: Constable. Rosenhain published over 100 research papers.
    Further Reading
    J.L.Haughton, 1934, "The work of Walter Rosenhain", Journal of the Institute of Metals 55(2):17–32.
    ASD

    Biographical history of technology > Rosenhain, Walter

  • 11 Edison, Thomas Alva

    [br]
    b. 11 February 1847 Milan, Ohio, USA
    d. 18 October 1931 Glenmont
    [br]
    American inventor and pioneer electrical developer.
    [br]
    He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.
    At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.
    Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.
    He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.
    Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.
    Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.
    Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.
    In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.
    On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.
    Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.
    In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.
    In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.
    In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.
    In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.
    In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.
    [br]
    Principal Honours and Distinctions
    Member of the American Academy of Sciences. Congressional Gold Medal.
    Further Reading
    M.Josephson, 1951, Edison, Eyre \& Spottiswode.
    R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.
    IMcN

    Biographical history of technology > Edison, Thomas Alva

  • 12 Perkin, Sir William Henry

    [br]
    b. 12 March 1838 London, England
    d. 14 July 1907 Sudbury, England
    [br]
    English chemist, discoverer of aniline dyes, the first synthetic dyestuffs.
    [br]
    He early showed an aptitude for chemistry and in 1853 entered the Royal College of Chemistry as a student under A.W.von Hofmann, the first Professor at the College. By the end of his first year, he had carried out his first piece of chemical research, on the action of cyanogen chloride on phenylamine, which he published in the Journal of the Chemical Society (1857). He became honorary assistant to von Hofmann in 1857; three years previously he had set up his own chemical laboratory at home, where he had discovered the first of the azo dyes, aminoazonapththalene. In 1856 Perkin began work on the synthesis of quinine by oxidizing a salt of allyl toluidine with potassium dichromate. Substituting aniline, he obtained a dark-coloured precipitate which proved to possess dyeing properties: Perkin had discovered the first aniline dye. Upon receiving favourable reports on the new material from manufacturers of dyestuffs, especially Pullars of Perth, Perkin resigned from the College and turned to the commercial exploitation of his discovery. This proved highly successful. From 1858, the dye was manufactured at his Greenford Green works as "Aniline Purple" or "Tyrian Purple". It was later to be referred to by the French as mauve. Perkin's discovery led to the development of the modern dyestuffs industry, supplanting dyes from the traditional vegetable sources. In 1869, he introduced two new methods for making the red dye alizarin, in place of the process that involved the use of the madder plant (Rubia tinctorum). In spite of German competition, he dominated the British market until the end of 1873. After eighteen years in chemical industry, Perkin retired and devoted himself entirely to the pure chemical research which he had been pursuing since the 1850s. He eventually contributed ninety papers to the Chemical Society and further papers to other bodies, including the Royal Society. For example, in 1867 he published his synthesis of unsaturated organic acids, known as "Perkin's synthesis". Other papers followed, on the structure of "Aniline Purple". In 1881 Perkin drew attention to the magnetic-rotatory power of some of the substances he had been dealing with. From then on, he devoted particular attention to the application of this phenomenon to the determination of chemical structure.
    Perkin won wide recognition for his discoveries and other contributions to chemistry.
    The half-centenary of his great discovery was celebrated in July 1906 and later that year he received a knighthood.
    [br]
    Principal Honours and Distinctions
    Knighted 1906. FRS 1866. President, Chemical Society 1883–5. President, Society of Chemical Industry 1884–5. Royal Society Royal Medal 1879; Davy Medal 1889.
    Bibliography
    26 August 1856, British patent no. 1984 (Aniline Purple).
    1867, "The action of acetic anhydride upon the hydrides of salicyl, etc.", Journal of the Chemical Society 20:586 (the first description of Perkin's synthesis).
    Further Reading
    S.M.Edelstein, 1961, biography in Great Chemists, ed. E.Farber, New York: Interscience, pp. 757–72 (a reliable, short account).
    R.Meldola, 1908, Journal of the Chemical Society 93:2,214–57 (the most detailed account).
    LRD

    Biographical history of technology > Perkin, Sir William Henry

  • 13 Baekeland, Leo Hendrik

    [br]
    b. 14 November 1863 Saint-Martens-Latern, Belgium
    d. 23 February 1944 Beacon, New York, USA
    [br]
    Belgian/American inventor of the Velox photographic process and the synthetic plastic Bakélite.
    [br]
    The son of an illiterate shoemaker, Baekeland was first apprenticed in that trade, but was encouraged by his mother to study, with spectacular results. He won a scholarship to Gand University and graduated in chemistry. Before he was 21 he had achieved his doctorate, and soon afterwards he obtained professorships at Bruges and then at Gand. Baekeland seemed set for a distinguished academic career, but he turned towards the industrial applications of chemistry, especially in photography.
    Baekeland travelled to New York to further this interest, but his first inventions met with little success so he decided to concentrate on one that seemed to have distinct commercial possibilities. This was a photographic paper that could be developed in artificial light; he called this "gas light" paper Velox, using the less sensitive silver chloride as a light-sensitive agent. It proved to have good properties and was easy to use, at a time of photography's rising popularity. By 1896 the process began to be profitable, and three years later Baekeland disposed of his plant to Eastman Kodak for a handsome sum, said to be $3–4 million. That enabled him to retire from business and set up a laboratory at Yonkers to pursue his own research, including on synthetic resins. Several chemists had earlier obtained resinous products from the reaction between phenol and formaldehyde but had ignored them. By 1907 Baekeland had achieved sufficient control over the reaction to obtain a good thermosetting resin which he called "Bakélite". It showed good electrical insulation and resistance to chemicals, and was unchanged by heat. It could be moulded while plastic and would then set hard on heating, with its only drawback being its brittleness. Bakelite was an immediate success in the electrical industry and Baekeland set up the General Bakelite Company in 1910 to manufacture and market the product. The firm grew steadily, becoming the Bakélite Corporation in 1924, with Baekeland still as active President.
    [br]
    Principal Honours and Distinctions
    President, Electrochemical Society 1909. President, American Chemical Society 1924. Elected to the National Academy of Sciences 1936.
    Further Reading
    J.Gillis, 1965, Leo Baekeland, Brussels.
    A.R.Matthis, 1948, Leo H.Baekeland, Professeur, Docteur ès Sciences, chimiste, inventeur et grand industriel, Brussels.
    J.K.Mumford, 1924, The Story of Bakélite.
    C.F.Kettering, 1947, memoir on Baekeland, Biographical Memoirs of the National Academy of Sciences 24 (includes a list of his honours and publications).
    LRD

    Biographical history of technology > Baekeland, Leo Hendrik

  • 14 Crookes, Sir William

    SUBJECT AREA: Electricity
    [br]
    b. 17 June 1832 London, England
    d. 4 April 1919 London, England
    [br]
    English chemist and physicist who carried out studies of electrical discharges and cathode rays in rarefied gases, leading to the development of the cathode ray tube; discoverer of the element thallium and the principle of the Crookes radiometer.
    [br]
    Crookes entered the Royal College of Chemistry at the age of 15, and from 1850 to 1854 held the appointment of Assistant at the college. In 1854 he became Superintendent of the Meteorological Department at the Radcliffe Observatory in Oxford. He moved to a post at the College of Science in Chester the following year. Soon after this he inherited a large fortune and set up his own private laboratory in London. There he studied the nature of electrical discharges in gases at low pressure and discovered the dark space (later named after him) that surrounds the negative electrode, or cathode. He also established that the rays produced in the process (subsequently shown by J.J.Thompson to be a stream of electrons) not only travelled in straight lines, but were also capable of producing heat and/or light upon impact with suitable anode materials. Using a variety of new methods to investigate these "cathode" rays, he applied them to the spectral analysis of compounds of selenium and, as a result, in 1861 he discovered the element thallium, finally establishing its atomic weight in 1873. Following his discovery of thallium, he became involved in two main lines of research: the properties of rarified gases, and the investigation of the elements of the "rare earths". It was also during these experiments that he discovered the principle of the Crookes radiometer, a device in which light is converted into rotational motion and which used to be found frequently in the shop windows of English opticians. Also among the fruits of this work were the Crookes tubes and the development of spectacle lenses with differential ranges of radiational absorption. In the 1870s he became interested in spiritualism and acquired a reputation for his studies of psychic phenomena, but at the turn of the century he returned to traditional scientific investigations. In 1892 he wrote about the possibility of wireless telegraphy. His work in the field of radioactivity led to the invention of the spinthariscope, an early type of detector of alpha particles. In 1900 he undertook investigations into uranium which led to the study of scintillation, an important tool in the study of radioactivity.
    While the theoretical basis of his work has not stood the test of time, his material discoveries, observations and investigations of new facts formed a basis on which others such as J.J. Thomson were to develop subatomic theory. His later involvement in the investigation of spiritualism led to much criticism, but could be justified on the basis of a belief in the duty to investigate all phenomena.
    [br]
    Principal Honours and Distinctions
    Knighted 1897. Order of Merit 1910. FRS 1863. President, Royal Society 1913–15. Honorary LLD Birmingham. Honorary DSc Oxon, Cambridge, Sheffield, Durham, Ireland and Cape of Good Hope.
    Bibliography
    1874, On Attraction and Repulsion Resulting from Radiation.
    1874, "Researches in the phenomenon of spiritualism", Society of Metaphysics; reprinted in facsimile, 1986.
    Further Reading
    E.E.Fournier D'Albe, 1923, Life of Sir William Crookes. Who Was Who II, 1916–28, London: A. \& C. Black. T.I.Williams, 1969, A Biographical Dictionary of Scientists. See also Braun, Karl Ferdinand.
    KF / MG

    Biographical history of technology > Crookes, Sir William

  • 15 Hopkinson, John

    [br]
    b. 27 July 1849 Manchester, England
    d. 27 August 1898 Petite Dent de Veisivi, Switzerland
    [br]
    English mathematician and electrical engineer who laid the foundations of electrical machine design.
    [br]
    After attending Owens College, Manchester, Hopkinson was admitted to Trinity College, Cambridge, in 1867 to read for the Mathematical Tripos. An appointment in 1872 with the lighthouse department of the Chance Optical Works in Birmingham directed his attention to electrical engineering. His most noteworthy contribution to lighthouse engineering was an optical system to produce flashing lights that distinguished between individual beacons. His extensive researches on the dielectric properties of glass were recognized when he was elected to a Fellowship of the Royal Society at the age of 29. Moving to London in 1877 he became established as a consulting engineer at a time when electricity supply was about to begin on a commercial scale. During the remainder of his life, Hopkinson's researches resulted in fundamental contributions to electrical engineering practice, dynamo design and alternating current machine theory. In making a critical study of the Edison dynamo he developed the principle of the magnetic circuit, a concept also arrived at by Gisbert Kapp around the same time. Hopkinson's improvement of the Edison dynamo by reducing the length of the field magnets almost doubled its output. In 1890, in addition to-his consulting practice, Hopkinson accepted a post as the first Professor of Electrical Engineering and Head of the Siemens laboratory recently established at King's College, London. Although he was not involved in lecturing, the position gave him the necessary facilities and staff and student assistance to continue his researches. Hopkinson was consulted on many proposals for electric traction and electricity supply, including schemes in London, Manchester, Liverpool and Leeds. He also advised Mather and Platt when they were acting as contractors for the locomotives and generating plant for the City and South London tube railway. As early as 1882 he considered that an ideal method of charging for the supply of electricity should be based on a two-part tariff, with a charge related to maximum demand together with a charge for energy supplied. Hopkinson was one the foremost expert witnesses of his day in patent actions and was himself the patentee of over forty inventions, of which the three-wire system of distribution and the series-parallel connection of traction motors were his most successful. Jointly with his brother Edward, John Hopkinson communicated the outcome of his investigations to the Royal Society in a paper entitled "Dynamo Electric Machinery" in 1886. In this he also described the later widely used "back to back" test for determining the characteristics of two identical machines. His interest in electrical machines led him to more fundamental research on magnetic materials, including the phenomenon of recalescence and the disappearance of magnetism at a well-defined temperature. For his work on the magnetic properties of iron, in 1890 he was awarded the Royal Society Royal Medal. He was a member of the Alpine Club and a pioneer of rock climbing in Britain; he died, together with three of his children, in a climbing accident.
    [br]
    Principal Honours and Distinctions
    FRS 1878. Royal Society Royal Medal 1890. President, Institution of Electrical Engineers 1890 and 1896.
    Bibliography
    7 July 1881, British patent no. 2,989 (series-parallel control of traction motors). 27 July 1882, British patent no. 3,576 (three-wire distribution).
    1901, Original Papers by the Late J.Hopkinson, with a Memoir, ed. B.Hopkinson, 2 vols, Cambridge.
    Further Reading
    J.Greig, 1970, John Hopkinson Electrical Engineer, London: Science Museum and HMSO (an authoritative account).
    —1950, "John Hopkinson 1849–1898", Engineering 169:34–7, 62–4.
    GW

    Biographical history of technology > Hopkinson, John

  • 16 Mitscherlich, Alexander

    SUBJECT AREA: Paper and printing
    [br]
    b. 28 May 1836 Berlin, Germany
    d. 31 May 1918 Oberstdorf, Germany
    [br]
    German inventor of sulphite wood pulp for papermaking.
    [br]
    Mitscherlich had an impeccable scientific background; his father was the celebrated chemist Eilhardt Mitscherlich, discoverer of the law of isomorphism, and his godfather was Alexander von Humboldt. At first his progress at school failed to live up to this auspicious beginning and his father would only sanction higher studies if he first qualified as a teacher so as to assure a means of livelihood. Alexander rose to the occasion and went on to gain his doctorate at the age of 25 in the field of mineralogical chemistry. He worked for a few years as Assistant to the distinguished chemists Wöhler in Göttingen and Wurtz in Paris. On his father's death in 1863, he succeeded him as teacher of chemistry in the University of Berlin. In 1868 he accepted a post in the newly established Forest Academy in Hannoversch-Munden, teaching chemistry, physics and geology. The post offered little financial advantage, but it left him more time for research. It was there that he invented the process for producing sulphite wood pulp.
    The paper industry was seeking new raw materials. Since the 1840s pulp had been produced mechanically from wood, but it was unsuitable for making fine papers. From the mid-1860s several chemists began tackling the problem of separating the cellulose fibres from the other constituents of wood by chemical means. The American Benjamin C.Tilghman was granted patents in several countries for the treatment of wood with acid or bisulphite. Carl Daniel Ekman in Sweden and Karl Kellner in Austria also made sulphite pulp, but the credit for devising the process that came into general use belongs to Mitscherlich. His brother Oskar came to him at the Academy with plans for producing pulp by the action of soda, but the results were inferior, so Mitscherlich substituted calcium bisulphite and in the laboratory obtained good results. To extend this to a large-scale process, he was forced to set up his own mill, where he devised the characteristic towers for making the calcium bisulphite, in which water trickling down through packed lime met a rising current of sulphur dioxide. He was granted a patent in Luxembourg in 1874 and a German one four years later. The sulphite process did not make him rich, for there was considerable opposition to it; government objected to the smell of sulphur dioxide, forestry authorities were anxious about the inroads that might be made into the forests and his patents were contested. In 1883, with the support of an inheritance from his mother, Mitscherlich resigned his post at the Academy to devote more time to promoting his invention. In 1897 he at last succeeded in settling the patent disputes and achieving recognition as the inventor of sulphite pulp. Without this raw material, the paper industry could never have satisfied the insatiable appetite of the newspaper presses.
    [br]
    Further Reading
    H.Voorn "Alexander Mitscherlich, inventor of sulphite wood pulp", Paper Maker 23(1): 41–4.
    LRD

    Biographical history of technology > Mitscherlich, Alexander

См. также в других словарях:

  • High Energy Materials Research Laboratory — Infobox Laboratory name = High Energy Materials Research Laboratory motto = logo = established = 1960 city = Pune, Maharashtra research field = Explosives type = director = Dr. A. Subhananda Rao staff = 1200 Scientists budget = operating agency …   Wikipedia

  • Naval Materials Research Laboratory — Established 1953 Director Mr. R. S. Hastak Address Shil Badlapur Rd., MIDC Area, Ambernath 421506, District Thane, Maharashtra Location Ambernath, Mahar …   Wikipedia

  • Materials Science Laboratory — MSRR 1 (NASA) The Materials Science Laboratory (MSL) of the European Space Agency is a payload on board the International Space Station for materials science experiments in low gravity. It is installed in NASA s first Materials Science Research… …   Wikipedia

  • Materials Simulation Laboratory — The Materials Simulation Laboratory of the Department of Physics, University of South Florida, (MSL) was established in 2002 by Prof. Ivan Oleynik of that University. The MSL is dedicated to solving challenging problems in condensed matter and… …   Wikipedia

  • Materials Science Laboratory — MSRR 1 (NASA) Das Materials Science Laboratory (MSL) ist ein Experiment der Europäischen Weltraumorganisation an Bord der Internationalen Raumstation. Es wurde im August 2009 im Rahmen der STS 128 Mission mit dem Space Shuttle Discovery gestartet …   Deutsch Wikipedia

  • Materials Research Science and Engineering Centers — MRSEC is an acronym for Materials Research Science and Engineering Centers, funded by the United States National Science Foundation. Materials Research Science and Engineering Centers (MRSECs) support interdisciplinary and multidisciplinary… …   Wikipedia

  • Materials Simulation Laboratory (MSL) — The Materials Simulation Laboratory of the Department of Physics, University of South Florida, (MSL) was established in 2002 by Prof. Ivan Oleynik of that University. The MSL is dedicated to solving challenging problems in condensed matter and… …   Wikipedia

  • Research Laboratory for Archaeology and the History of Art — The Research Laboratory for Archaeology and the History of Art is a laboratory at the University of Oxford, England which develops and applies scientific methods to the study of the past.As of 2005, the Laboratory is directed by Prof. Mark… …   Wikipedia

  • Transport Research Laboratory — (TRL) is a British centre for transport research, providing consultancy, advice and solutions for a wide range of transport related issues. Originally established in 1933 by the UK Government as the Road Research Laboratory (RRL), it was… …   Wikipedia

  • Climatic Research Laboratory — The Climatic Research Laboratory (CRL) was a U.S. Army military clothing and equipment test site formerly located at Lawrence, MA from 1943 to 1954. The lab tested textile and insulating materials and was capable of simulating climatic conditions …   Wikipedia

  • United States Naval Research Laboratory — Naval Research Laboratory Emblem of the NRL Active 1923 present Country …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»